# Effect of precursor solutions with different composition on synthesis of ultrafine BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> using sol-gel auto-combustion technique

# R. Q. GUO

State Key Laboratory of MMCs, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Institute of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China E-mail: rqguo@fudan.edu.cn

### M. G. GU

State Key Laboratory of MMCs, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China

# H. G. LI

Department of Metallurgy Science and Engineering, Central South University, Changsha 410083, People's Republic of China

# W. HUANG

Institute of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China

### P. M. SUN

Department of Metallurgy Science and Engineering, Central South University, Changsha 410083, People's Republic of China

### Y. P. JIN

State Key Laboratory of MMCs, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China

Hexagonal BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> ultrafine powders with a magnetoplumbite type (M-type) structure were synthesized by a sol-gel auto-combustion method. Precursor solutions with different composition were investigated to clarify the forming conditions of the ferrites. The crystal structure, grain size, form and magnetic properties were studied by means of X-ray diffraction (XRD), transmission electronic microscopy (TEM) and vibrating sample magnetometry (VSM). On the basis of analysing the effect of ammonia, citric acid and glycol on phase structure and magnetic properties, it was demonstrated that adjusting the pH value of the precursor solution with ammonia and adding an appropriate amount of citric acid and glycol are key steps in synthesis of ultrafine powders with single BaFe<sub>12</sub>O<sub>19</sub> phase and excellent magnetic properties. In the presence of chelate agent (citric acid) and dispersant (glycol), under the conditions of pH about 7.0, nitrate/citric acid molar ratio of 1:3 and calcination temperature of 850°C (1 h), M-type BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> ultrafine powders with a particle size of about 36 nm, a specific magnetization 6 s of 65.54 A  $\cdot$  m<sup>2</sup>/kg and a coercive force Hc of 433 kA/m, were obtained. © *2004 Kluwer Academic Publishers* 

### 1. Introduction

Traditional barium ferrite materials are widely used as permanent magnets. Recently, more attention has been paid to them because they can also be used as perpendicular magnetic recording media with high density [1]. These applications require materials with a strict control of homogeneity, particle size and shape, and magnetic properties. The synthesis method strongly determines these characteristics. During the last few decades, people have made great efforts to prepare ferrite powders with high performance. On the one hand, people managed to reduce the particle size of the powders by various techniques such as chemical co-precipitation [2], hydrothermal method [3], hydrolysis of metalorganic complexes [4], glass crystallization [5], microemulsion method [6], cryochemical method [7], aerosol synthesis [8] and sol-gel technique [9]. On the other hand, people tried to use microelement doping [10].

In our work, both the synthesis method and microelement doping were considered to prepare high performance powder materials. Considering their special properties and abundance in China, rare earths were used as doping elements in this work so as to improve the magnetic properties of barium ferrite and widen their application market.

We report in this paper an analysis of the influence of solutions' composition on structure, morphology and magnetic properties of BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> particles prepared using the sol-gel auto-combustion technique.

### 2. Experimental

According to the composition of the ferrite BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub>, stoichiometric amount of ferric nitrate, barium nitrate and lanthanum nitrate which was prepared by the reaction between  $La_2O_3$  and HNO<sub>3</sub>, was dissolved in distilled water with or without subsequent addition of citric acid (the molar ratio of nitrate/citrate = 1/3) and/or glycol (the molar ratio of citrate/glycol = 1/3). The initial pH of the solution was adjusted with ammonia solution addition. The obtained solution was slowly evaporated until a viscous liquid was formed and it was evaporated in vacuum to form the dry gel. The gel was further spontaneously ignited by heating in the air followed by self-propagating combustion for the purpose of decomposing the organic precursor to form dendritic fluffy powders [11]. Finally, the powders were calcined at 850°C for 1 h.

The sol-gel auto-combustion technique in this work offers the following advantages: the intimate mixing of the starting materials on an ionic level, the convenient adding and control of chemical agents, the lower annealing temperature in the crystallization, the small particles and narrow size distribution, and the low production cost.

Chemical composition and pH values of precursor solutions for preparing six samples are listed in Table I.

The synthesized powders were characterized using XRD and TEM. The specific magnetization,  $6_s$ , and coercive force, Hc of unoriented assemblies of the prepared powders were measured by means of VSM at a maximum applied field of 1107 kA/m at room temperature. The average size of crystallite ( $D^{\#}$ ) was deduced from the width of XRD maxima by applying the classical Scherrer equation.

TABLE I Chemical composition of different solutions

| Samples | Chemical agents                          | pH   |
|---------|------------------------------------------|------|
| A       | Citric acid + glycol                     | 1.10 |
| В       | Citric acid + glycol + $NH_3 \cdot H_2O$ | 6.96 |
| С       | Citric acid                              | 1.04 |
| D       | Glycol                                   | 1.74 |
| Е       | Citric acid + $NH_3 \cdot H_2O$          | 6.96 |

TABLE II Crystal phases of five samples after combustion

| Samples           | Crystal phase                         |  |  |
|-------------------|---------------------------------------|--|--|
| A <sub>comb</sub> | $\gamma - Fe_2O_3 + \alpha - Fe_2O_3$ |  |  |
| B <sub>comb</sub> | $\gamma - Fe_2O_3$                    |  |  |
| C <sub>comb</sub> | $\gamma - Fe_2O_3 + \alpha - Fe_2O_3$ |  |  |
| D <sub>comb</sub> | $\gamma - Fe_2O_3 + \alpha - Fe_2O_3$ |  |  |
| E <sub>comb</sub> | $\gamma - Fe_2O_3$                    |  |  |

# **3. Results and discussion** 3.1. Experimental results

The crystal phases of five samples after combustion  $(A_{comb}-E_{comb})$  are shown in Table II. In all samples, the  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> was the sole phase or main phase. No detectable  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> was found in samples B and E. Only small amounts of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> existed in samples A, C and D.

After combustion the powders were further annealed at 850°C for 1 h using a heating rate of 10°C/min. The crystal structure and magnetic properties of samples  $A_{850}$ – $E_{850}$  are shown in Table III. TEM of these samples is shown in Fig. 1.

In samples  $B_{850}$  and  $E_{850}$ , the  $BaFe_{12}O_{19}$  was the sole phase. No detectable  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> was found in them. However, small amounts of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> existed in samples  $A_{850}$  and  $C_{850}$  besides  $BaFe_{12}O_{19}$ . Especially, in sample  $D_{850}$ , the main phase is the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, not the BaFe<sub>12</sub>O<sub>19</sub>.

### 3.2. Discussion

#### 3.2.1. The effect of ammonia on phase structure

After combustion, the phases of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> are obtained in sample A<sub>comb</sub> (pH = 1.10), whereas in sample B<sub>comb</sub> (pH = 6.96), only  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> phase is obtained, and no  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phase is detectable. The same phenomenon could be observed by comparing sample C<sub>comb</sub> with sample E<sub>comb</sub>. Therefore, the presence of ammonia in the precursor solution strongly determines the phase structure of the samples in the intermediate state before calcination.

On the basis of the results in Tables II and III, it can be observed that if  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> exists in the intermediate state, the final sample (A<sub>850</sub>, C<sub>850</sub>) after annealing contain a mixture of BaFe<sub>12</sub>O<sub>19</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phases, whereas sample B<sub>850</sub> and E<sub>850</sub> are completely single BaFe<sub>12</sub>O<sub>19</sub> phase because the intermediate phase is  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> only. This indicates that the conversion of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> in the intermediate state into the BaFe<sub>12</sub>O<sub>19</sub> is quite difficult.

As we all know,  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> is a cubic spinel, whose chemical formula is Fe [Fe<sub>5/3</sub> $\square_{1/3}$ ]O<sub>4</sub>, where  $\square$  stands for a cation hole [1]. Its structure is similar to that of "S" block in Ba-ferrite, thus  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> can be easily converted into BaFe<sub>12</sub>O<sub>19</sub> phase. whereas  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> is FeTiO<sub>3</sub>-type structure which belongs to the trigonal crystal system. Its crystal cell is orthorhombic hexahedron which is difficult to transform to BaFe<sub>12</sub>O<sub>19</sub> phase. Therefore, the crystal structure of intermediate Fe<sub>2</sub>O<sub>3</sub> plays an important role in the formation of BaFe<sub>12</sub>O<sub>19</sub> phase.

TABLE III Results of XRD, VSM and average size of crystallites

| Samples          | Crystal phase                                                                 | $\sigma_s (A \cdot m^2/kg)$ | б <sub>г</sub> (A $\cdot$ m <sup>2</sup> /kg) | Hc (kA/m) | $D^{\#}$ (nm) |
|------------------|-------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|-----------|---------------|
| A <sub>850</sub> | $BaFe_{12}O_{19} + \alpha - Fe_2O_3$                                          | 50.71                       | 26.89                                         | 371       | 60            |
| B <sub>850</sub> | BaFe <sub>12</sub> O <sub>19</sub>                                            | 65.54                       | 35.42                                         | 433       | 36            |
| C <sub>850</sub> | $BaFe_{12}O_{19} + \alpha - Fe_2O_3$                                          | 32.06                       | 17.28                                         | 372       | 74            |
| D <sub>850</sub> | $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> + BaFe <sub>12</sub> O <sub>19</sub> | 24.32                       | 12.24                                         | 351       | 55            |
| E850             | BaFe <sub>12</sub> O <sub>19</sub>                                            | 62.34                       | 33.08                                         | 405       | 42            |



Figure 1 TEM of samples with different composition of solutions: (a)  $A_{850}$ , (b)  $B_{850}$ , (c)  $C_{850}$ , (d)  $D_{850}$ , and (e)  $E_{850}$ .

# 3.2.2. The effect of ammonia on magnetic properties

The magnetic properties of samples are also listed in Table III. As we know, their magnetism is mainly from the BaFe<sub>12</sub>O<sub>19</sub>, hard magnetic crystal phase, not from the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, a non-magnetic phase. The results of VSM showed that the specific magnetization and coercive force of sample B<sub>850</sub> and E<sub>850</sub> are larger than those of sample A<sub>850</sub> and C<sub>850</sub>, which is in agreement with the results of XRD.

In addition, the homogeneity and the average size of crystallites also determine the magnetic properties. It can be seen from Fig. 1 that the samples  $A_{850}$  and  $C_{850}$ consist of two kinds of particles showing different morphologies, i.e., spherical particles of a diameter ranging from 20 to 30 nm and hexagonal platelets with a size distribution in the range 30-150 nm. In contrast, the particles of samples B<sub>850</sub> and E<sub>850</sub> are homogeneous hexagonal platelet crystals only, with a narrower size distribution and perfect crystal phase. The average size of crystallite deduced by applying the classical Scherrer equation and the results detected from TEM, showed that the average size of crystallite in samples  $B_{850}$  and  $E_{850}$  are 36 nm and 42 nm respectively, which are much smaller than that in samples A<sub>850</sub> and C<sub>850</sub>. Therefore, the fact that the magnetic properties of samples  $B_{850}$ and  $E_{850}$  are better than those of  $A_{850}$  and  $C_{850}$  certainly indicates the presence of a proportion of large multi-domain grains and fine superparamagnetic particles which can reduce the overall coercive force by domain nucleation.

In summary, adjusting the pH value of precursor solution by adding ammonia is a key step in synthesis of ultrafine powders with single  $BaFe_{12}O_{19}$  phase and excellent magnetic properties using the sol-gel auto-combustion technique.

# 3.2.3. The effect of citric acid

Whether citric acid is present or not is the difference between precursor solutions A and D. By comparing the results of sample  $A_{850}$  with  $D_{850}$  in Table III, it can be concluded that whether citric acid is present in the precursor solution has an effect on both the phase structure and the magnetic properties. After calcination, the BaFe<sub>12</sub>O<sub>19</sub> phase is the main phase in  $A_{850}$ , whereas the main phase in sample  $D_{850}$  is  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. As magnetic properties are governed by the phase composition, the specific magnetization and coercive force of sample  $D_{850}$  are much smaller than those of  $A_{850}$ . Therefore, citric acid acting as chelate agent is indispensable.

With increasing amount of citric acid, the magnetic properties improve greatly. The magnetic properties of powders with various amounts of citric acid are listed in Table IV.

It is said that when there is excessive citric acid in the solution, citric acid plays roles of not only chelate agent but also dispersant. Thus, the particles could be prevented from agglomerating in the later processes [12].

# 3.2.4. The effect of dispersant (glycol)

It can be seen from Table I that whether glycol is present or not is the difference between precursor solution B

TABLE IV Magnetic properties of powders at various amount of citric acid

|                          | Ma                                                                      |                                                                  |           |
|--------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------|
| n (Citrate): n (Nitrate) | $\overline{6_{s}\left(\mathbf{A}\cdot\mathbf{m}^{2}/\mathrm{kg} ight)}$ | $6_{r} \left(\mathbf{A} \cdot \mathbf{m}^{2}/\mathrm{kg}\right)$ | Hc (kA/m) |
| 1:1                      | 55.90                                                                   | 29.98                                                            | 365       |
| 1.5:1                    | 61.13                                                                   | 33.6                                                             | 422       |
| 3:1                      | 65.54                                                                   | 35.42                                                            | 433       |

and E. By comparing the results of sample  $B_{850}$  with  $E_{850}$  in Table III, it can be concluded that whether glycol is present in precursor solution has no effect on the crystal structure but has an important effect on the particle size and magnetic properties. After calcination, the single  $BaFe_{12}O_{19}$  phase is obtained in both sample  $B_{850}$  and  $E_{850}$ . However, the magnetic properties of sample  $B_{850}$  are better than those of  $E_{850}$ . For example, the coercive force of  $B_{850}$  is 433 kA/m, whereas  $E_{850}$  is 405 kA/m. And the average size of crystallite in sample  $B_{850}$  is smaller than that in sample  $E_{850}$ . The same phenomenon could be observed by comparing sample  $A_{850}$ and  $C_{850}$ . Therefore, the adding of glycol is necessary due to its characteristics of easy polymerization.

Glycol's molecular formula is OH–CH<sub>2</sub>–CH<sub>2</sub>–OH. It can act as both dispersant and assistant chelate agent. With the addition of glycol, the precursor solution consists of long chains of organic molecules. It can strengthen the complexing of barium ion and citric acid, quicken Brownian Motion, enhance the diffusivity and stabilize the dynamics, leading to small particles.

# 4. Conclusions

Precursor solutions with different composition were investigated to clarify the forming conditions of ferrites. On the basis of analysing the effect of ammonia, citric acid and glycol on phase structure and properties, the following conclusions were reached:

(1) Whether ammonia solution is present in the precursor solution strongly determines the phase structure of the samples in the intermediate state before calcination.

(2) The crystal structure of intermediate Fe<sub>2</sub>O<sub>3</sub> plays an important role in the formation of BaFe<sub>12</sub>O<sub>19</sub> phase. If  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> exists in the intermediate state, the final sample after annealing is a mixture of BaFe<sub>12</sub>O<sub>19</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phases, not completely single BaFe<sub>12</sub>O<sub>19</sub> phase because the conversion of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> in the intermediate state into the BaFe<sub>12</sub>O<sub>19</sub> is quite difficult.

(3) The phase structure, the homogeneity and the average size of crystallites determine the magnetic properties.

(4) With an increase of the amount of citric acid, the magnetic properties improve greatly.

(5) Whether glycol is present in the precursor solution has no effect on the crystal structure but has important effect on the particle size and magnetic properties.

In summary, the sol-gel auto-combustion technique is an effective method to prepare homogeneous ultrafine  $BaLa_{0.3}Fe_{11.7}O_{19}$  powders. Adjusting the pH value of

precursor solution with ammonia and adding an appropriate amount of citric acid and glycol are key steps in synthesis of ultrafine powders with single  $BaFe_{12}O_{19}$ phase and excellent magnetic properties. Only with the pH of approximately 7.0 and in the simultaneous presence of citric acid and glycol, can the formation of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phase in the intermediate state be prevented, and thus ultrafine pure BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> powders be obtained at relatively low temperature(in the case of 850°C). The final BaLa<sub>0.3</sub>Fe<sub>11.7</sub>O<sub>19</sub> powder with an average crystallite size of 36 nm prepared under the optimum conditions exhibits a specific magnetization 6 s of 65.54 A  $\cdot$  m<sup>2</sup>/kg and a coercive force Hc of 433 kA/m, close to the theoretical expected values [1] and greatly improved compared with BaFe<sub>12</sub>O<sub>9</sub> powders (without the doping of rare earth La) prepared by the same technique.

#### References

1. Y. W. DOU, in "Ferrite" (Jiangsu Science and Technology Press, Nanjing, 1996).

- 2. V. V. PANKOV, M. PERNET, P. GERMI and P. MOLLARD, J. Magn. Magn. Mater. 120 (1993) 69.
- 3. C. H. LIN, IEEE Trans. Magn. 26(1) (1990) 15.
- 4. K. HANEDA, C. MIYAKAWA and K. GOTO, *ibid*. MAG-23 (1987) 3134.
- 5. K. ODA, T. YOSHIO and K. O. OKA, J. Mater. Sci. Let. 3 (1984) 1007.
- VINOD PILLAI, PROMOD KUMAR and D. O. SHAH, J. Magn. Magn. Mater. 116 (1992) L299.
- T. G. KUZ'MITCHEVA, L. P. OL'KHOVIK and V. P. SHABATIN, *IEEE Trans. Magn.* 31(1) (1995) 800.
- M. V. CABANAS, J. M. GONZÁLEZ-CALBET and M. VALLET-REGÍ, J. Mater. Res. 9(3) (1994) 712.
- 9. ZHENXING YUE, Chinese J. Mater. Res. 13(5) (1999) 484.
- 10. XIANSONG LIU, WEI ZHONG, BENXI GU, et al., Rare Metal Mater. Engin. **31**(5) (2002) 385.
- 11. C.-H. YAN, Z.-G. XU, F.-X. CHENG, et al., Solid State Commun. 111 (1999) 287.
- 12. LI HONGGUI, GUO RUIQIAN, SUN PEIMEI, et al., Trans. Nonf. Met. Soc. China 11(3) (2001) 447.

Received 2 December 2002 and accepted 7 July 2003